6 research outputs found

    AN INVESTIGATION INTO PARTITIONING ALGORITHMS FOR AUTOMATIC HETEROGENEOUS COMPILERS

    Get PDF
    Automatic Heterogeneous Compilers allows blended hardware-software solutions to be explored without the cost of a full-fledged design team, but limited research exists on current partitioning algorithms responsible for separating hardware and software. The purpose of this thesis is to implement various partitioning algorithms onto the same automatic heterogeneous compiler platform to create an apples to apples comparison for AHC partitioning algorithms. Both estimated outcomes and actual outcomes for the solutions generated are studied and scored. The platform used to implement the algorithms is Cal Poly’s own Twill compiler, created by Doug Gallatin last year. Twill’s original partitioning algorithm is chosen along with two other partitioning algorithms: Tabu Search + Simulated Annealing (TSSA) and Genetic Search (GS). These algorithms are implemented inside Twill and test bench input code from the CHStone HLS Benchmark tests is used as stimulus. Along with the algorithms cost models, one key attribute of interest is queue counts generated, as the more cuts between hardware and software requires queues to pass the data between partition crossings. These high communication costs can end up damaging the heterogeneous solution’s performance. The Genetic, TSSA, and Twill’s original partitioning algorithm are all scored against each other’s cost models as well, combining the fitness and performance cost models with queue counts to evaluate each partitioning algorithm. The solutions generated by TSSA are rated as better by both the cost model for the TSSA algorithm and the cost model for the Genetic algorithm while producing low queue counts

    Leveraging new platforms to provide students with a realistic SoC design experience

    Get PDF
    Recently there have been a slew of digital design products released that promise to simplify the task of giving students a real-world System-on-Chip (SoC) design experience. These “programmable SoCs” from companies such as Xilinx, Cypress, and Altera combine modern multi-core ARM processors connected to an FPGA through a widely used SoC interconnect standard. This paper discusses a Real Time Embedded System Course I designed that uses the Xilinx Zynq platform to give students first-hand experience with modern System-on-Chip design methodologies and the challenges that designers face in both hardware and software bring-up for a modern IP-based design. The first portion of this paper discusses how students were trained to use the Zynq platform. The first weeks of the class were dedicated to teaching students the basics of real-time system and custom hardware design. Students used a Zynq-based port of Free-RTOS to learn about Real-time operating systems. Through a series of laboratory assignments, students are taught how to interface the RTOS with custom hardware that they place on the FPGA portion of the chip. The course material developed for this portion of the class will be posted online so that other educators may use it in their teaching. The second part of this paper discusses some of the projects proposed and completed by students, and any difficulties the students faced along the way. From two weeks into the class, students are asked to form groups of up to four and propose a final project. For their final project, students are required to design and build a complete working system of their choice. Their final project is required to make use of both the processor running RTOS and at least one custom IP block running on the FPGA. In the final section of this paper I examine student feedback for the course, and comment on some of the challenges I faced in integrating the Zynq PSoC platform, and its corresponding development tools, into the classroom

    Plasmonic/Magnetic Multifunctional nanoplatform for Cancer Theranostics

    Get PDF
    Cancer is the second leading disease which causes major mortality and morbidity worldwide1 . In cancer therapy, it is crucial to increase the drug specificity and drug efficacy to minimise or completely eradicate significant side-effects on patients2 . Cancer nanotherapeutics overcome many serious drawbacks of chemotherapy such as non-specific targeting, lower efficacy, insolubility of drug moieties in water and oral bioavailability3 . Accordingly, Superparamagnetic Iron Oxide Nanoparticles (SPIONs) are exploited as an important nanomaterial for cancer detection as well as therapeutics4 . Such magnetic nanoparticles (NPs) gained its momentum because of their single-domain ordering along with their large surface to volume ratio (providing large surface area for attachment of biological entities). Hence, this property makes them a suitable candidate as a contrast agent, drug-carrying cargo and hyperthermal agent5

    Wearable Active Electrode for sEMG Monitoring Using Two-Channel Brass Dry Electrodes with Reduced Electronics

    No full text
    Gel-based electrodes are employed to record sEMG signals for prolonged periods. These signals are used for the control of myoelectric prostheses, clinical analysis, or sports medicine. However, when the gel dries, the electrode-skin impedance increases considerably. Using dry active electrodes (AEs) to compensate variations of impedance is an alternative for long-term recording. This work describes the optimization of the electronic design of a conventional AE by removing the impedance coupling stage and two filters. The proposed work consisted of 5 stages: electrodes, amplification (X250), 2.2 Vdc offset, low-pass filter, and ADC with USART communication. The device did not need the use of electrolytic gel. The measurements of CMRR (96 dB), amplitude of the output sEMG signal (∼1.6 Vp-p), and system bandwidth (15–450 Hz) were performed in order to confirm the reliability of the device as an sEMG signal acquisition system. The SNR values from seven movements performed by eleven volunteers were compared in order to measure the repeatability of the measurements (average 30.32 dB for a wrist flexion). The SNR for wrist flexion measured with the proposed and the commercial system was compared; the values were 49 dB and 60 dB, respectively

    Targeting Kinetoplastid and Apicomplexan Thymidylate Biosynthesis as an Antiprotozoal Strategy

    No full text
    corecore